Rainbow Ramsey Problems for the Boolean Lattice
نویسندگان
چکیده
Abstract We address the following rainbow Ramsey problem: For posets P , Q what is smallest number n such that any coloring of elements Boolean lattice B either admits a monochromatic copy or . consider both weak and strong (non-induced induced) versions this problem.
منابع مشابه
Rainbow Ramsey Theory
This paper presents an overview of the current state in research directions in the rainbow Ramsey theory. We list results, problems, and conjectures related to existence of rainbow arithmetic progressions in [n] and N. A general perspective on other rainbow Ramsey type problems is given.
متن کاملRainbow Ramsey simple structures
A relational structure R is rainbow Ramsey if for every finite induced substructure C of R and every colouring of the copies of C with countably many colours, such that each colour is used at most k times for a fixed k, there exists a copy R∗ of R so that the copies of C in R∗ use each colour at most
متن کاملBipartite rainbow Ramsey numbers
Let G and H be graphs. A graph with colored edges is said to be monochromatic if all its edges have the same color and rainbow if no two of its edges have the same color. Given two bipartite graphs G1 and G2, the bipartite rainbow ramsey number BRR(G1; G2) is the smallest integer N such that any coloring of the edges of KN;N with any number of colors contains a monochromatic copy of G1 or a rai...
متن کاملThe strength of the rainbow Ramsey Theorem
The Rainbow Ramsey Theorem is essentially an “anti-Ramsey” theorem which states that certain types of colorings must be injective on a large subset (rather than constant on a large subset). Surprisingly, this version follows easily from Ramsey’s Theorem, even in the weak system RCA0 of reverse mathematics. We answer the question of the converse implication for pairs, showing that the Rainbow Ra...
متن کاملAnti-Ramsey Problems for t Edge-Disjoint Rainbow Spanning Subgraphs: Cycles, Matchings, or Trees
We seek the maximum number of colors in an edge-coloring of the complete graph Kn not having t edge-disjoint rainbow spanning subgraphs of specified types. Let c(n, t), m(n, t), and r(n, t) denote the answers when the spanning subgraphs are cycles, matchings, or trees, respectively. We prove c(n, t) = ( 2 ) + t for n ≥ 8t − 1 and m(n, t) = ( 2 ) + t for n > 4t + 10. We prove r(n, t) = ( 2 ) + t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Order
سال: 2021
ISSN: ['1572-9273', '0167-8094']
DOI: https://doi.org/10.1007/s11083-021-09581-4